* Manuscript

Click here to view linked References

Solving differential equations with constructed
neural networks

TIoannis G. Tsoulos"), Dimitris Gavrilis®®, Euripidis Glavas®

(MDepartment of Computer Science,
University of loannina, GREECE 45110
) Digital Curation Unit Athena Research Centre
Artemidos 6 & Epidavrou 15125 Maroussi Greece

() Department of Communications, Informatics and Management,
Technological Educational Institute of Epirus, Greece

Abstract

A novel hybrid method for the solution of ordinary and partial dif-
ferential equations is presented here. The method creates trial solutions
in neural network form using a scheme based on grammatical evolution.
The trial solutions are enhanced periodically using a local optimization
procedure. The proposed method is tested on a series of ordinary differen-
tial equations, systems of them as well as on partial differential equations
with Dirichlet boundary conditions and the results are reported.

Keywords: Differential equations, Neural networks, genetic programming, gram-
matical evolution.

1 Introduction

A series of problems in many scientific fields can be modelled with the use
of differential equations such as problems in physics [1, 2, 3, 4, 5], chemistry
[6, 7, 8], biology [9, 10], economics [11] etc. Due to importance of differential
equations many methods have been proposed in the relevant literature for their
solution such as Runge Kutta methods [12, 13, 14], Predictor - Corrector [15,
16, 17], radial basis functions [18, 19|, artificial neural networks [20, 21, 22,
23, 24, 25, 26, 27], models based on genetic programming [28, 29| etc. In this
article a hybrid method utilizing constructed feed - forward neural networks by
grammatical evolution and a local optimization procedure is used in order to
solve ordinary differential equations (ODE’S), systems of ordinary differential

’s). The constructed
neural networks with grammatical evolution have been recently introduced by
Tsoulos et al [30] and it utilizes the well - established Grammatical Evolution



technique [31] to evolve the neural network topology along with the network
parameters. The method has been tested with success on a series of data - fitting
and classifications problems. In this article the constructed neural network
methodology is applied on a series of differential equations preserving the initial
or boundary conditions using penalization. The proposed method does not
require the user to enter any information regarding the topology of the network.
Also, the new method can be used to solve either ODE’s ore PDE’s and it can
be easily parallelized. This idea is similar to the Cascade Correlation neural
networks introduced by [32] in which the user is not required to enter any
topology information. However the method for selecting the network topology
differs since the proposed algorithm is a stochastic one. In the proposed method,
the advantage of using an evolutionary algorithm is that the penalty function
(used for initial or boundary conditions) can be incorporated easily into the
training process.

The rest of this article is organized as follows: in section 2 a brief descrip-
tion of the Grammatical Evolution algorithm is given followed by an analytical
description of the proposed, in section 3 the test functions used in the experi-
ments followed by the experimental results are outlined and in section 4 some
conclusions are derived.

2 Method description

In this section a brief description of the Grammatical Evolution algorithm is
given, the main steps of the proposed algorithm are outlined with the steps for
the fitness evaluation for the cases of ODFE’s, SODE’s and PDFE’s.

2.1 Grammatical Evolution

Grammatical evolution is an evolutionary technique that can produce code in
any programming language requiring the grammar of the target language in
BNF syntax and some proper fitness function and it has been used with success
in many scientific fields such as symbolic regression [34], discovery of trigonomet-
ric identities [35], robot control [36], caching algorithms [37], financial prediction
[38] etc. Chromosomes in grammatical evolution, in contrast to classical genetic
programming [33], are not expressed as parse trees, but as vectors of integers.
Each integer denotes a production rule from the given BNF grammar. The al-
gorithm starts from the start symbol of the grammar and gradually creates the
program string, by replacing non terminal symbols with the right hand of the
selected production rule. The selection is performed in two steps:

Read an element from the chromosome (with value V).

Select the rule according to the scheme

RULE = V mod R (1)



where R is the number of rules for the specific non-terminal symbol. The
process of replacing non terminal symbols with the right hand of production
rules is continued until either a full program has been generated or the end
of chromosome has been reached. In the latter case we can reject the entire
chromosome or we can start over (wrapping event) from the first element of the
chromosome. If the limit of the wrapping events is reached the chromosome is
rejected by assigning to it a large fitness value, which prevents the chromosome
to be used in the crossover procedure. In the proposed algorithm the limit
of wrapping events was set to 2. As an example of the mapping procedure
of the Grammatical Evolution consider the BNF grammar shown in figure 1.
The number in parentheses denote the sequence number of the corresponding
production rule to be used in the mapping procedure. Consider the chromosome
z=19,8,6,4,16,10,17,23, 8, 14]. The steps of the mapping procedure are listed
in table 1. The final outcome of these steps is the expression x4 + cos (x3).

2.2 Algorithm description

The proposed method is based on an evolutionary algorithm, a stochastic pro-
cess whose basis lies in the biological evolution. In order to measure the effi-
ciency of the algorithm, a neural network capable of solving differential equa-
tions is employed. The neural network’As efficiency is used as the fitness of the
evolutionary algorithm along with a penalty function which is used in order to
represent the boundary or initial conditions of the differential equations. The
idea of combining a neural network with an evolutionary algorithm is a well es-
tablished approach that has been used numerous times both in the bibliography
and in real-world applications. The main steps of the algorithm have as follows:

1. Set the number of chromosomes S, the number of maximum generations
allowed K, the crossover rate p., the mutation rate p,,, a small positive
number ¢ the integer parameter G and the integer parameter M. The
parameter G determines how frequent the local search procedure will be
applied and the parameter M determines in how many chromosomes the
local optimization procedure will be applied.

2. Set iters=0.

3. Initialize the S chromosomes. Each chromosome will be mapped to a
neural network using a procedure described subsequently in subsection
2.3.

4. Calculate Ss
is described in the following subsection.

5. Apply the genetic operations of crossover and mutation to the population.
6. Set iters=iters+1.
7. If iters mod G=0 then



(a) For i=1..M do

i. Select randomly a chromosome R; from the genetic population.
ii. Construct with the Grammatical Evolution procedure the cor-
responding neural network N (R;).
iii. Train the neural network N (R;) with a local optimization pro-
cedure.
iv. Put the modified chromosome back to the genetic population.

(b) End for

8. Endif

9. If iters> K or the best chromosomes has fitness value below the prede-
fined threshold € terminate, else goto step 4.

2.3 Neural Network Construction

Every chromosome in the genetic population is a vector of integers, which is
mapped through the mapping procedure of Grammatical Evolution into a feed
- forward artificial neural network with one hidden level and one output. The
output of the constructed neural network is a summation of different sigmoidal
units and it can be formulated as:

H d

N(xz,p)= Zp(dﬁ»z)if(dﬁ»l)a Zp(d+2)i7(d+1)+j$j + D(a+2)i (2)
i=1 j=1

The constant d denotes the dimension of the input vector @', the parameter H
denotes the number of the processing units (hidden nodes) of the neural network
and the function (z) is the sigmoidal function expressed by the equation:

1
1+ exp(—x)

(z) (3)
The BNF grammar that controls the mapping procedure is shown in figure 2.
The sigmoidal functions used in the neural network can be replaced by other
functions including radial basis functions. By introducing dynamic activation
functions in the neural network, a new parameter is introduced in the system.
This new parameter can be either encoded in the evolutionary algorithm or it
can be wrapped into another algorithm that firstly “selects” the optimal acti-
vation function. In such cases it is usually required to use cross validation to
measure how well the selected activation functions work. For further informa-
tion regarding this matter please refer to [30].

2.4 Fitness evaluation

a similar way as in
[29] using penalization. The proposed penalty function is used to force the neural



network to train on the boundary conditions (PDEs) or the initial conditions
(ODEs). The error function represents the neural network’As misclassification
rate and is necessary in order to measure its efficiency.

2.4.1 ODE case

The method considers ODE’s given in the following form:
f <w,y,y(1),~--,y(”’”’y(”)> =0, z € [a,b] (4)

where 3™ denotes the n-order derivative of 3. The initial conditions are ex-
pressed in the following form:

v, <l’,y,y(1), ~--,y(”71)> —0,i=1.n (5)

lz=t;

where ¢; is either a or b. The steps for the fitness evaluation of any given chro-
mosome g are:

1. Choose T equidistant points in [a, b] denoted by [zg, z1,...,z7 1].
2. Construct the neural network N(z,g) using Grammatical Evolution.

3. Calculate the train error of the network using the equation:
T—1 )
B(N(@) =Y f (2N (@), NO (@i,9),s N (219) ) (6)
i=0
4. Calculate the penalty value P (N (g))using the following equation:
n
P(N(9) =AY W (2. N 9). Nz 9), . N D(g)) (1)
k=1

where )\ is a positive number.

5. Calculate the final fitness value as:
V(g) = E(N(z,9)) + P(N(z,9)) (8)

2.4.2 SODE case

The proposed method deals with systems of ordinary differential equations ex-
pressed in the form:

1 1 1
fl xaylay§ )ayQayé )aaykay](g) =0

1 1 1
f2 xaylvy§ )ayZayé )a""yk’yl(c) =0

1 1 1
fk <$ay1ay§ )ayzayé )aayk’y](g) 0



with the following initial conditions:

yi(a) = Yia
Y2 (a) _ y?a (10)
yk(a) = Yka

The steps for the fitness evaluation of any given chromosome g are the following:

1.
2.

Choose T equidistant points in [a, b] denoted by [zg, z1, ..., TT 1]

Split the chromosome g into k parts and construct using Grammatical
Evolution the neural networks Ni(z,g), Na(z,g), ..., Ng(z,g).

Calculate the train errors E (N;(g)), ¢ = 1..k for every neural network
using the equation:

T 1
2
E(Nl(ilj,g)) = Z fl <$j’N1 (xj’g)’Nl(l) (in,g) ) aNk (xjag)aN]il) (J:Jag)>>
=0
(11)
Calculate the penalty value for every neural network N;(z,g), ¢ = 1..k:
P (Ni(9)) = A(Ni (a,9) = yia)® (12)
Calculate the total fitness value
k
V(g) =Y E(Ni(x,9))+ P (Ni(x,9)) (13)
=1

2.4.3 PDE case

The proposed method deals with PDE’s of two variables with Dirichlet boundary
conditions, without loss in generality. The PDE’s must be expressed in the form:

2 2

0 0 0
f <$aya \I/(:E,y), %\If(ﬁ,y), a_yqj(may)a ﬁ\lj(may)a 8_y2\lj($ay)> =0 (14)

with z € [a,b] and y € [c,d]. The boundary conditions are given by:

a,y) = fo(y)
< b,y) = fily)
z,¢) = go(x)
z,d) = g1(z)

e g are:



1. Choose T uniformly distributed points in the grid [a, b] X [c,d] denoted
by [z, ], ¢ =0.T —1.

2. Choose B equidistant points in [a, b] denoted xp;, i = 0..B — 1.
3. Choose B equidistant points in [c, d] denotes by 43,7 = 0..B — 1.

4. Construct using the Grammatical Evolution procedure the neural net-
work N(z,y,9).

5. Calculate the train error of the neural network N(z, vy, g):

— B B 82 82 2
E(N = N —N —N —N —N
(N(x,9,9)) ;f <fcy (,9,9), 5 (w,y,g),ay (z,9,9), 922 (l‘,y,g),ayz (%y’g))
(15)
6. Calculate the penalty quantities
B—1
Pi(N(z,9,9) =X > (N(a,ui,9) = fo (y:))”
1=0
B—1
Py(N(z,9,9)) =A > (N (b ywi,9) = fi (si))’
1=0
B—1
Py(N(z,y,9)) =X > (N (i c,9) = go (i)’
1=0
B—1
Py(N(z,y,9)) =X > (N (pi,d,9) — g1 (xp:))” (16)
1=0

where A\ a positive real number.

7. Calculate the total fitness with

V(g) = E(N(z,y,9))+P1(N(z,y,9))+P(N(2,y,9))+Ps(N(z,y, g))vL(P;gN(x, Y,9))
1

3 Experiments

The proposed method was tested on a series of ODE’s, non - linear ODE’s, sys-
iables and Dirich-
let boundary conditions. Theses test functions are listed subsequently and they
have been used in the experiments performed in [20] and in [29]. In all exper-
iments, the ODE’s were sampled using a uniform distribution and only 1000
samples were extracted in the intervals of x that for each case. In the following
sub-sections, the ODE’s are presented for each one of the four series.



3.1 Linear ODE’s
ODE1

,:2$—y

)
T

with y(1) = 3 and z € [1,2]. The analytical solution is y(z) = = + 2

ODE2

,  1—ycos(x)
Y sin(x)

with y(1) = =2— and z € [1,2]. The analytical solution is y(z) =

sin(1) sin(z) "

ODE3

y// — 6y/ _ gy

with y(0) = 0 and y'(0) = 2 and = € [0,1]. The analytical solution is y(z) =
2z exp(3x).

ODE4

1 1
V==Y y—gew <—§> cos(z)

with y(0) = 0 and y(1) = 2234) and = € [0,1]. The analytical solution is

y(z) = exp (—£) sin(z).

ODES5

1 1
y'+ =y — = cos(z) =0
T T

with y(0) =0, 3'(0) =1 and z € [0, 1]. The solution is given by:
xr H t
y(x) = / ()
0 t
ODES6

y' +2zy =0
with y(0) =0, 3'(0) =1 and z € [0, 1]. The solution is given by:

y(z) = /090 exp (—t* dt



ODE7

"

Y $2+1:)—2$y—$2—1:0

with y(0) = 0, y’(0) = 1 and = € [0,1]. The analytical solution is y(z) =
2% 4 1) arctan(z).

3.2 Non linear ODE’s
NLODE1

1
=3

"

with y(1) = 1 and z € [1,4]. The analytical solution is given by y(x) = /&
NLODE2

(y')* +log(y) — cos®(z) 2cos(z) 1—log(z +sin(z)) =0
with y(1) = 1+sin(1) and = € [1,2]. The analytical solution is y(z) = z+sin(z).
NLODES3

4
Moot o *
vy = LUB

with y(1) = 0 and z € [1,2]. The analytical solution is given by y(z) = log z?).
NLODE4

2.1 "2 1
=0
z7y" + (xy) + o)

with y(e) = 0, y'(e) = L and x € [e,2¢]. The analytical solution is y(z) =

log(log(z)).

3.3 Systems of ODE’s
SODE1

vy = cos(z)+y}+y2— 2°+sin’(2))

’

Yy = 2z x?sin(z) + yiye

with y1(0) = 0, y2(0) = 0 and = € [0,1]. The analytical solution is given by:

y1(z) = sin(z), y2(x) = 22.



SODE2

/ cos(z) — sin(x)

Y1 = s
Y2 = Y192+ exp(x) — sin(x)
with 1(0) = 0, 2(0) = 1 and = € [0,1]. The analytical solution is given by:
yi(@) = 228y (2) = exp(a).
SODE3
n = cos(z)
y; = —4un
y;; = Y2
y; = Y
Vs = m

with 1(0) = 0, y2(0) = 1, y3(0) = 0, y4(0) = 1, y5(0) = 0 and = € [0,1].
The analytical solution is given by: yi(z) = sin(z), y2(x) = cos(x), y3(z) =
sin(:z:), y4($) = COS(:E), ys(l') = sin(:v).

SODE4
/ 1 .
y, = ——sin(exp(z))
Y2
Ya = Y2

with y1(0) = cos(1.0), y2(0) = 1.0 and = € [0, 1].The analytical solution is given
by: y1(z) = cos(exp(z)), ya(x) = exp( ).

3.4 PDE’s

PDE1

V2U(z,y) = exp(—z) (:I: —243 + 6y)

with z € [0,1], y € [0, 1] and the boundary conditions: ¥(0,y) = y3, ¥(1,y) =
1+y%) exp(—1), ¥(z,0) = zexp(—z), ¥(z,1) = (v + 1) exp(—=). The ana-
lytical solution is given by: W(z,y) = z + y*) exp(—2).

PDE2

VZ\II(JJ’ y) = —2¥(z,y)

with x € [0,1], y € [0,1]. The associated boundary conditions are: ¥(0,y) =
0, ¥(l,y) =sin(1)cos(y), z,0) =sin(z), ¥(x,1) = sin(z)cos(1). The ana-
lytical solution is given by:  z,y) = sin(z) cos(y).

10



PDE3

V2P (z,y) = 4

with € [0,1], ¥ € [0,1]. The boundary conditions are: ¥(0,y) = 3%+ y +
L, ¥(l,y) =y  +y+3, 2,0 =22+2+1, V1) =22+2z+3 The
analytical solution is given by:  z,y) =22 +y?> +x +y+ 1.

PDE4

V2 zy) = (x 2)exp( z)+ zexp(—y)

with z € [0,1], y € [0,1]. The boundary conditions are given by: W¥(0,y) =
0, ¥(l,y) = sm( , ¥(x,0) =0, ¥(x,1) = sin(z). The analytical solution is
given by: ¥(z,y) = sin(zy).

3.5 Experimental results

The method was performed 30 times, using different seed for the random number
generator each time, on every differential equation described previously and
averages were taken. In table 2 the numerical values for the parameters of the
algorithm are listed. The numerical values for the majority of these parameters
were taken from the papers of Lagaris et al[20] and Tsoulos et al [30] and some
of them have been found experimentally. The local optimization procedure
used in the experiments was a BFGS variant due to Powell [39]. In table 3
the results from the application of the proposed method to the test functions
are listed. The column TRAIN ERROR denotes the average per point error
of the proposed method to the T points of the training set, the column TEST
ERROR denotes the average per point error of the proposed method to the
points belonging to the test set and the column GENERATIONS denote the
average number of the required generations of the genetic algorithm. For the
cases of ODE’s and SODE’s the test set had 1000 equidistant points and for the
case of PDE’s the test set had 10000 uniformly distributed points. In figure 3
we can observe the progress of solution for a example run for ODE1. As we can
notice the proposed method managed in 60 generations to solve the objective
problem. Also in figure 4 the application of the final solution in range [1:3]
is plotted against the true solution f(z) = x + 2. As we can see the final
solution maintains its equality even outside the training domain. Furthermore,
in table 4 we list the experimental results for the same problem using different
values of the parameter A. As it can be noticed, the method succeeds in solving
the problem even though for small values of the critical parameter . As we
can notice from the column GENERATIONS of table 3 the proposed method
managed to solve all ODE’s in very little time, if time is expressed as the number
of required generations. The proposed method is a combination of two types
of algorithms: a stochastic (genetic algorithm) and a deterministic. This fact
raises some stability issues so, in order to overcome this, each experiment ran for

11



30 times with a different seed in order to diminish any random variations in the
experimental results. The stability issues mostly refer to the stochastic nature
of the proposed algorithm. This means that it does not always converge to the
same local minimum. That is why in the experimental setup each experiment
ran for 30 times with different seed.

4 Conclusions

In conclusion, a novel method for solving ODE’s, PDE’s and SODE’s is pre-
sented. This method utilizes neural networks that are constructed using arti-
ficial neural networks that are constructed using grammatical evolution. This
novel method for simultaneously constructing and training neural networks, has
been used successfully in other domains. Concerning the differential equations
problem, a series of experiments in 19 well known problems, showed that the
proposed method managed to solve all problems. Although, a number of meth-
ods for differential equations solving exists, the proposed one has a very little
execution time and does not require the user to enter any parameters. The main
advantages of the proposed method are the following:

1. The user is only required to sample the differential equations in order to
create the train/test files.

2. The method is general enough to be applied to ODE’s SODE’s and PDE’s.

3. The final solution is expressed in a closed analytical form (neural network
form) which is a differentiable form.

4. The final solution provides good generalization abilities, even outside the
domain of the differential equation.

t

The proposed method is based on genetic algorithms, which means that
it can be easily parallelized.

6. The proposed method can be extended by using different BNF grammar
for the constructed neural networks with different topologies (such as re-
current neural networks) or different activations functions.

7. The method can be extended to solve higher order differential equations,
a task that is currently being researched.

Acknowledgements
All the experiments of this paper were conducted at the Research Center of
is composed of 200

computing nodes with dual cpus (AMD OPTERON 2.2GHZ 64bit) running
Redhat Enterprise Linux.

12



References

[1] A.R.Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Differential equations
for quantum correlation functions, International Journal of Modern Physics
B 4, pp. 1003-1037, 1990.

[2] A. V. Kotikov, Differential equations method: the calculation of vertex-
type Feynman diagrams, Physics Letters B 259, pp. 314-322, 1991.

[3] H. Gang, H. Kaifen, Controlling chaos in systems described by partial dif-
ferential equations, Phys. Rev. Lett. 71, pp. 3794 - 3797, 1993.

[4] C.J.Budd, A. Iserles, Geometric Integration: Numerical Solution of Differ-
ential Equations on Manifolds, Philosophical Transactions: Mathematical,
Physical and Engineering Sciences 357, pp. 945-956, 1999.

[6] Y.Z. Peng, Exact solutions for some nonlinear partial differential equations,
Physics Letters A 314, pp. 401-408, 2003.

[6] J. G. Verwer, J. G. Blom, M. van Loon, E. J. Spee, A comparison of stiff
ODE solvers for atmospheric chemistry problems, Atmospheric Environ-
ment 30, pp. 49-58, 1996.

[7] J. Behlke, O. Ristau, A new approximate whole boundary solution of the
Lamm differential equation for the analysis of sedimentation velocity ex-
periments, Biophysical Chemistry 95, pp. 59-68, 2002.

[8] U. Salzner, P. Otto, J. Ladik, Numerical solution of a partial differential
equation system describing chemical kinetics and diffusion in a cell with
the aid of compartmentalization, Journal of Computational Chemistry 11,
pp. 194-204, 1990.

[9] R.V. Culshaw, S. Ruan, A delay-differential equation model of HIV infec-
tion of CD4+ T-cells, Mathematical Biosciences 165, pp. 27-39, 2000.

[10] G.A.Bocharov, F.A. Rihan, Numerical modelling in biosciences using delay
differential equations, Journal of Computational and Applied Mathematics
125, pp. 183-199, 2000.

[11] R. Norberg, Differential equations for moments of present values in life
insurance, Insurance: Mathematics and Economics 17, pp. 171-180, 1995.

[12] J.C. Butcher, The numerical analysis of ordinary differential equations:
Runge-Kutta and general linear methods,Wiley-Interscience New York,
NY, USA, 1987.

[13] J. G. Verwer, Explicit Runge-Kutta methods for parabolic partial differen-
tial equations, Applied Numerical Mathematics 22, pp. 359-379, 1996.

[14] A. Wambecq, Rational Runge-Kutta methods for solving systems of ordi-
20, pp. 333-342, 1978.

13



[15] J. Douglas, B. F. Jones, On Predictor-Corrector Methods for Nonlinear
Parabolic Differential Equations, Journal of the Society for Industrial and
Applied Mathematics 11, pp. 195-204, 1963.

[16] R. W. Hamming, Stable Predictor-Corrector Methods for Ordinary Differ-
ential Equations, Journal of the ACM 6, pp. 37-47, 1959.

[17] J.D. Lambert, Numerical methods for Ordinary Differential Systems: The
Initial Value Problem, John Wiley & Sons: Chichester, England, 1991.

[18] G.E. Fasshauer, Solving differential equations with radial basis functions:
Multilevel methods and smoothing, Advances in Computational Mathe-
matics 11, pp. 139-159, 1999.

[19] C.Franke, R. Schaback, Solving partial differential equations by collocation
using radial basis functions, Applied Mathematics and Computation 93,
pp. 73-82, 1998.

[20] L.E. Lagaris, A. Likas, D.I.Fotiadis, Artificial neural networks for solving
ordinary and partialdifferential equations, IEEE Transactions on Neural
Networks 9, pp. 987-1000, 1998.

[21] P. Ramuhalli, L. Udpa, S.S. Udpa, Finite - element neural networks for
solving differential equations, IEEE Transactions on Neural Networks 16,
pp- 1381-1392, 2005.

[22] D.R. Parisi, M.C. Mariani, M.A. Laborde, Solving differential equations
with unsupervised neural networks, Chemical Engineering and Processing:
Process Intensification 42, pp. 715-721, 2003.

[23] L. Jianyu, L. Siwei, Q. Yingjian, H. Yaping, Numerical solution of differen-
tial equations by radial basis function neural networks, Proceedings of the
International Joint Conference on Neural Networks 1, pp. 773-777, 2002.

[24] S. He, K. Reif, R. Unbehauen, Multilayer neural networks for solving a class
of partial differential equations, Neural Networks 13, pp. 385-396, 2000.

[25] F. Puffer, R. Tetzlaff, D. Wolf, Learning algorithm for cellular neural net-
works (CNN) solving nonlinear partial differential equations, Conference
Proceedings of the International Symposium on Signals, Systems and Elec-
tronics, pp. 501-504, 1995.

[26] A.J. Meade Jr., A.A. Fernandez, Solution of nonlinear ordinary differential
equations by feedforward neural networks, Mathematical and Computer
Modelling 20, pp. 19-44, 1994.

[27] A.J. Meade Jr., A.A. Fernandez, The numerical solution of linear ordinary
94, Mathematical
and Computer Modelling 19, pp. 1-25, 1994.

14



28]

[29]

[30]

31]

32]

33]

[34]

[35]

[36]

37]

[38]

[39]

G. Burgess, Find approximate analytic solutions to differential equations
using genetic programming, Surveillance Systems Division, Electronics and
Surveillance Research Laboratory, Department of Defense, Australia, 1999.

I.G. Tsoulos, I.LE. Lagaris, Solving differential equations with genetic pro-
gramming, Genetic Programming and Evolvable Machines 7, pp. 33-54,
2006.

1.G. Tsoulos, D. Gavrilis, E. Glavas, Neural Network Construction and
Training using Grammatical Evolution, accepted for publication in Neuro-
computing.

M. O’Neill, C. Ryan, Grammatical Evolution, IEEE Trans. Evolutionary
Computation 5, pp. 349-358, 2001.

S.E. Fahlman, C. Lebiere, The cascade-correlation learning architecture,
Advances in Neural Information Processing Systems 2, pp. 524-532, 1990.

J. R. Koza, Genetic Programming: On the programming of Computer by
Means of Natural Selection. MIT Press: Cambridge, MA, 1992.

M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic
Programming in a Arbitrary Language, volume 4 of Genetic programming.
Kluwer Academic Publishers, 2003.

C. Ryan, M. O’Neill, and J.J. Collins, Grammatical Evolution: Solving
Trigonometric Identities, In proceedings of Mendel 1998: 4th International
Mendel Conference on Genetic Algorithms, Optimization Problems, Fuzzy
Logic, Neural Networks, Rough Sets., Brno, Czech Republic, June 24-26
1998. Technical University of Brno, Faculty of Mechanical Engineering, pp.
111-119.

Collins J. and Ryan C., Automatic Generation of Robot Behaviors using
Grammatical Evolution, In Proc. of AROB 2000, the Fifth International
Symposium on Artificial Life and Robotics.

M. O’Neill and C. Ryan, Automatic generation of caching algorithms, In
Kaisa Miettinen, Marko M. Mkel, Pekka Neittaanmki, and Jacques Peri-
aux (eds.), Evolutionary Algorithms in Engineering and Computer Science,
Jyvskyl, Finland, 30 May - 3 June 1999, John Wiley & Sons, pp. 127-134,
1999

A. Brabazon and M. O’Neill, A grammar model for foreign-exchange trad-
ing, In H. R. Arabnia et al., editor, Proceedings of the International confer-

26 June 2003,
pp- 492-498, 2003.

M.J.D Powell, A Tolerant Algorithm for Linearly Constrained Optimization
Calculations, Mathematical Programming 45, pp. 547-566, 1989.

15



Figure 1: An example grammar.

S::=<expr> (0)
<expr> ::= ( <expr> <op> <expr> ) (0)
| <func> ( <expr> ) (1)
|<terminal> (2)
<op> ::= + (0)
[ - (D
[ * (2)
I/ (3
<func> ::= sin (0)
|cos (1)
lexp (2)
[1log (3)
<terminal>::=<xlist> (0)
|<digitlist>.<digitlist> (1)
<xlist>::=x1 (0)
[ x2 (1)
[x3 (2)
<digitlist>::=<digit> (0)
| <digit><digitlist> (1)
<digit> ::=0 (0) | 1 (1) | 2 (2) .... | 9 (9

Table 1: An example of the mapping procedure.

String Chromosome Operation
<expr> 9,8,6,4,16,10,17,23,8,14 9 mod 3=0

(<expr><op><expr>) 8,6,4,16,10,17,23,8,14 8 mod 3=2

(<terminal ><op><expr>) 6,4,16,10,17,23,8,14 6 mod 2=0

(<xlist><op><expr>) 4,16,10,17,23.,8,14 4 mod 3—1
(x2<op><expr>) 16,10,17,23,3,14 16 mod 4—0
(x2 | <expr>) 10,17,23,8,14 10 mod 3—1
(x2+<func>(<expr>)) 17,23,8,14 17 mod 4=1
(x2+cos(<expr>)) 23,8,14 23 mod 3=2
(x2+cos(<terminal>)) 8,14 8 mod 2=0
(x2+4cos(<xlist>)) 14 14 mod 3=2
(x2+cos(x3))

16



Figure 2: The proposed grammar

<S>::=<sigexpr> (0)
<sigexpr>::=<number>*sig(<sum>+<number>) (0)
| <number>*sig(<sum>+<number>) <sigexpr> (1)
<sum>: :=<number>*<xxlist> (0)
| <sum>+<sum> (@D)
<xxlist>::=x1 (0) | x2 (1) | ... | x_d (d-1)
<number>::=(<digitlist>.<digitlist>) (0)
| (-<digitlist>.<digitlist>) (1)
<digitlist>::=<digit> 0)
I<digit><digitlist> (1)
<digit>::=0 (0) | 1 (1) | 2 (2) | 3 (3 | 4 (4
| 5 B) 16 (6 17 (|8 19 (9

Table 2: The numerical values for the parameters of the method
NAME VALUE |

S 500
K 2000
Pe 0.9
Pm 0.05
€ | 106
A 100
G 20
M 20
T 100
B 10

17



Table 3: Experimental results of the proposed method

PROBLEM TRAIN ERROR ‘ TEST ERROR GENERATIONS

ODE1 1.6 x 10~8 1.5 x 1078 111
ODE2 5.0x 108 1.5 x10°8 78
ODE3 4.4 %1079 42 %1079 43
ODE4 1.0x 1077 1.0x 1077 189
ODE5 1.9x 1078 2.0x 108 119
ODES6 4.7%x10°8 47 %1078 65
ODE7 2.3x10°8 2.5 x 1078 913
NLODE1 3.2x10°8 3.1x10°8 69
NLODE2 1.1 x 1078 1.1 x 1078 405
NLODES3 1.2x 1076 1.2 x 1076 842
NLODE4 1.1 x 1077 1.1 x 107 289
SODE1 23x10°° 21x10°° 1422
SODE2 2.8 x 106 2.7x 1076 1078
SODE3 21x10°° 23x107° 1136
SODE4 5.8x 1077 5.9 x 1077 827
PDE1 3.9x 1077 1.6 x 107 1034
PDE2 9.6 x 1078 5.1 x 1078 996
PDE3 8.5x 1078 4.7 %1078 189
PDE4 1.9x 1076 1.1 x 1076 1267

Table 4: Solving the ODE1 problem for different values of parameter A
| A TRAIN ERROR TEST ERROR GENERATIONS

10 2.4 x107° 2.5 x 1079 100
100 1.6 x 1078 1.5x 1078 111
1000 2.2 x 10710 2.3x 1077 100

18



Figure 3: The progress of solution for an example run for ODE1

PROGRESS OF SOLUTION

PROGRESS ——

0 10

20 30 40 50 60
GENERATIONS

19



3.7

Figure 4: The quality of a trial solution for ODE1

THE QUALITY OF SOLUTION

35 F

33 F

3.1 F

29

' ' PROPOSED METHOD ——
f(x)=x+2/x

2.8

20




